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Abstract
In nonlinear optical spectroscopy, the self-action of an intense light beam has
an effect on the optical constants of a medium, which can be described in terms
of a meromorphic function as defined in complex analysis. Here the dispersion
theory of meromorphic optical constants is considered and general expressions
for dispersion relations and sum rules are derived for meromorphic optical
constants.

PACS numbers: 42.65.Ky, 42.65.-k, 78.20.Ci

1. Introduction

The interaction of light with a medium depends on the intrinsic optical constants (refractive
index and extinction coefficient) of the medium. During the past century the intrinsic optical
properties of media such as insulators, metals and semiconductors have been thoroughly
investigated in experiments and theories. Nowadays the optical constants of media are relevant
in many interdisciplinary fields of science, including physics, chemistry, engineering, medicine
and biology. During the history of experiments on optical constants, new devices, for example,
the ellipsometer [1], have been invented. With the theory of optical constants, the principle
of causality has been crucial in describing the dispersion of light [2, 3] and, moreover, in the
formulation of important dispersion relations known as Kramers–Krönig (KK) relations [4,5].
KK relations, which result from the principle of causality, do not just yield information about
optical constants or changes in these constants, but also give information about other intrinsic
optical properties of media via sum rules [6], which cannot be obtained, for example, by
ellipsometric measurements. In the case of nonlinear optics, the interaction of intense light
with media is relatively complicated. Nevertheless, the validity of the KK relations for
nonlinear susceptibilities of media has been known for a relatively long time [7–10]. Due
to the experimental complexities of nonlinear optics, the validity of KK relations was shown
as recently as 1992 by Kishida et al [11] for the case of a third-harmonic wave from polysilane
film. Bassani and Scandolo [12] were the first researchers who explicitly derived the KK
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relations for the optical constants of nonlinear media within the framework of pump and probe
configurations.

In the case of so-called nonlinear meromorphic susceptibilities [13,14] and in femtosecond
spectroscopy [15–17], however, it has been shown that KK relations are invalid. Lorentz’s and
Drude’s [18] classical dispersion theory of linear susceptibility, in addition to the quantum
mechanical description by Kramers and Heisenberg [18], allows the number of poles of
complex linear susceptibility to be countably infinite. Also, the complex linear susceptibility
diverges at the poles. We can state that such a complex-valued function behaves like a
holomorphic function almost everywhere. In the context of linear optical spectroscopy the
term ‘analytic function’, which is one of the important properties needed for the existence
of the KK relations, is usually used instead of ‘holomorphic function’ in the literature [6].
Nevertheless, both terms have the same meaning, but in nonlinear optics (where two or more
complex angular frequency variables may appear) the term ‘holomorphic’ is more appropriate
according to the theory of several complex variables [19]. Now, however, if we consider the
linear susceptibility in the whole complex angular-frequency plane, it means that we must
call the susceptibility a meromorphic function. Fortunately, in the normal derivation of KK
relations, it is possible to avoid the lower half plane where the poles of the linear susceptibility
are located, by dealing with a function that is holomorphic in the upper half plane. The
situation with nonlinear susceptibilities is very similar to the one above. However, nonliner
optical processes that demand the simultaneous existence of poles in both half planes require
the generalization of the treatment of the complex nonlinear susceptibility and dispersion
relations, because now the nonlinear susceptibility is a meromorphic function in the upper half
plane. It is important to note the importance of the dispersion relations in the context of the
spectra measurements. If the imaginary part, such as the absorption of light, can be measured
then the real part, such as the refractive index, can be calculated and vice versa. In other words
KK dispersion relations can be used for data inversion. The success of measurements and data
inversion can be tested using sum rules [6, 20]. In addition sum rules can be used for testing
the consistency of some particular dispersion models of a medium [20].

In this paper, for the very first time the dispersion theory of meromorphic optical constants
is considered. It is shown that KK relations for meromorphic optical constants are invalid.
There is, however, no conflict with the principle of causality.

2. Dispersion relations for meromorphic optical constants

The equivalence of causality and dispersion relations for linear optical constants was shown
by Krönig [21] and later by Toll [22] (see also [23]). The mathematical essence of causality
is that it provides a necessary and sufficient condition for the existence of KK relations. The
detailed derivation of KK relations, obtained by complex analysis, can be found, for example,
in Peiponen et al [20]. There is no doubt about the validity of KK relations in the field of linear
optics. We just mention here that the absolute values of the refractive index and the extinction
coefficient are obtained by a KK-phase retrieval procedure based on the measurement of
reflectance from a medium. If the absorption of light is measured by transmission, it is
possible to obtain information with the aid of a KK relation about the change in the refractive
index as a function of the light wavelength. Much of our present data on the optical constants
of media are based on the use of KK relations.

In nonlinear optical spectroscopy we usually stimulate nonlinear processes using high-
intensity laser beams impinging upon a medium. The complex refractive index can then be
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given, for instance in a pump and probe experiment, as follows:

N(ω1, ω2, E) = NL(ω1) + NNL(ω1, ω2, E) (1)

where ω1 is the angular frequency of a weak probe beam, ω2 is the angular frequency of a
pump beam and E is the electric field of the pump beam. The linear complex refractive index
is denoted in equation (1) by NL = nL + ikL, where nL is the real refractive index, kL is the
extinction coefficient, the corresponding nonlinear complex contribution is NNL = nNL + ikNL

and i is the imaginary unit. The KK relations can then be given, using the property of the
holomorphicity of the complex refractive index in the upper half of the complex angular
frequency plane and an asymptotic fall off of N = n+ik for high frequency, which is governed
by the linear complex refractive index. The KK relations can be written as follows [12]:

n(ω′
1, ω2, E) − 1 = 2

π
P

∫ ∞

0

ω1k(ω1, ω2, E)

ω2
1 − ω′2

1

dω1 (2)

k(ω′
1, ω2, E) = −2ω1

π
P

∫ ∞

0

n(ω1, ω2, E) − 1

ω2
1 − ω′2

1

dω1 (3)

where P denotes the Cauchy principal value. KK relations similar to the standard forms of
equations (2) and (3) are valid for most of the optical constants obtained by nonlinear processes.
However, if we consider a third-order (or higher) nonlinear single-wave self-action process at
frequency, ω, then the situation is completely different. The real part of the nonlinear complex
refractive index is proportional to the real part of the third-order susceptibility, i.e. [24]

Re {NNL(ω, ω, −ω)} = 3

4ε0n
2
Lc

Re {χ(3)(ω, ω, −ω)}I (4)

where ‘Re’ denotes the real part, ε0 is the vacuum permittivity, c is the velocity of light
in vacuum and I is the intensity of light. The imaginary part of the third-order nonlinear
susceptibility is related to two-photon absorption. In that case we can write [24]

Im {NNL(ω, ω, −ω)} = 3ω

2ε0n
2
Lc2

Im {χ(3)(ω, ω, −ω)}I (5)

where ‘Im’ stands for imaginary part. It is obvious that in both equations (4) and (5)
there appears a minus sign in front of one angular frequency variable. This property has
drastic consequences. We can describe the angular frequency dependence of the third-order
susceptibility with the aid of a function D(ω) = (ω2

0 −�2 − i��)−1, where ω0 is a resonance
angular frequency of the medium, � is the complex angular frequency and � is related to the
lifetime of an excited electron state. The third-order nonlinear susceptibility can be expressed
using the products [20] of the D functions. Due to the minus sign of the angular frequency,
the self-action third-order susceptibility involves a function D∗(ω) = (ω2

0 − �2 + i��)−1.
The latter being the complex conjugate of D. It is evident that D indicates the existence of
complex poles of χ(3) and N in the lower half plane, while D∗ indicates the simultaneous
existence of poles of χ(3) and N in the upper-half plane. This means that we have to give up
the property of holomorphicity with N , which was a crucial condition for the existence of the
KK relations. However, we can now deal with N as a meromorphic [25] function, which is
holomorphic almost everywhere except on a numerable set of complex poles and zeros. The
symmetry of the poles was recently described by Bassani and Lucarini [26]. Now the theorem
of residues can be applied to yield dispersion relations, which are not of the KK form

n(ω′, ω′, −ω′) − 1 = 2

π
P

∫ ∞

0

ωk(ω, ω, −ω)

ω2 − ω′2 dω − Im

(
2i

∑
poles

Re s

[
N(�, �, −�)

� − ω′

])
(6)

k(ω′, ω′, −ω′) = −2ω′

π
P

∫ ∞

0

n(ω, ω, −ω) − 1

ω2 − ω′2 dω − Re

(
2i

∑
poles

Re s

[
N(�, �, −�)

� − ω′

])
(7)
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where the symmetry relations NL(−ω) = N∗
L(ω) and NNL(−ω, −ω, ω) = N∗

NL(ω, ω, −ω)

are used. The residue terms in equations (6) and (7), i.e. the series expansions, are calculated
for poles located in the first quadrant of the complex angular frequency space. Unfortunately,
the residue terms involve complex functions; and such information cannot usually be obtained
from measured optical spectra. Furthermore, in order to calculate the residues, we have to
know the resonance points of the medium via optical spectrum. This may be an overwhelming
task especially in the case of adjacent overlapping resonance lines in the spectrum.

Causality is always valid; however, it is evident from the above discussion that in a
general case, which includes the meromorphism of optical constants (see [27] concerning the
causality and dispersion relations of third-order degenerate nonlinear susceptibility), causality
is necessary but not a sufficient condition for the existence of KK relations. An implication of
this is that, as shown by equations (6) and (7), KK relations are invalid for meromorphic
optical constants. A similar situation for the invalidity of KK relations can be found in
femtosecond spectroscopy in the event of the simultaneous incidence of a probe and pump light
pulse [15] upon a nonlinear medium. In such a case the third-order nonlinear susceptibility
is meromorphic. It is important to emphasize that in femtosecond spectroscopy where pump
and probe pulses are exploited the strict causality is broken if the pump arrives before the
probe. That is to say, the medium is already responding to a cause (pump) before the probe
beam is incident on the medium. Therefore, as pointed out by Tokunaga et al [16, 17] for
third-order nonlinear susceptibility, the validity of the KK relations is questionable. The phase
retrieval from meromorphic nonlinear susceptibility is possible, not by equations analogous to
equations (6) and (7), but by using a maximum entropy model [20], which was exploited [28]
to meromorphic third-order nonlinear susceptibility of a nanocomposite material representing
a two-phase Maxwell–Garnett system [29].

3. Sum rules for meromorphic optical constants

Sum rules for meromorphic optical constants can be derived by the inspection of equations (6)
and (7). For example, the DC-sum rule is obtained by setting ω′ = 0 in equation (6). Other
sum rules are obtained by inspection; for example, a function ωm[N(ω, ω, −ω) − 1]m, where
m is an integer. Then it holds, for example, for the odd m that

ω′mIm {Nm(ω′, ω′, −ω′)} = − 2

π
P

∫ ∞

0

ωm+1Re {Nm(ω, ω, −ω) − 1}
ω2 − ω′2 dω

−Re

(
2i

∑
poles, Im {pole} and Re {pole}>0

Re s
�mNm(�, �, −�)

� − ω′

)
. (8)

Now if we set m = 1 and let ω′ → 0, we find that∫ ∞

0
[n(ω, ω, −ω) − 1] dω = − lim

ω′→0
Re

×
(

2i
∑

poles, Im {pole} and Re {pole}>0

Re s
�mNm(�, �, −�)

� − ω′

)
(9)

provided that the limit is finite. The sum rule of equation (9) is analogous to the average sum
rule of the linear refractive index given by Altarelli et al [6]. The right-hand side of equation (9)
is equal to zero in the linear optics regime. A sum rule analogous to the f -sum rule can be
found using the asymptotic property N(ω, ω, −ω)−1 → nL(ω)−1 → −1/2(ω2

p/ω
2), which

is valid when the angular frequency tends to infinity and where ωp is the plasma frequency of
the system. Thus, from equation (6) we obtain
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∫ ∞

0
ωk(ω, ω, −ω) dω = π

4
ω2

p − lim
ω′→∞

×
(

Im 2i
∑

poles, Im {pole} and Re {pole}>0

Re s

(
N(�, �, −�)

� − ω′

))
. (10)

Obviously, the second term on the right-hand side of equation (10) tends to zero. This is
an important result since the f -sum rule is hereby a universal property irrespective of the
linearity or nonlinearity or holomorphicity or meromorphicity of the complex optical constant
of the system. This last observation complements the result of Bassani and Scandolo [12] who
showed that the f -sum rule in the pump and probe system in nonlinear optics yields zero for the
imaginary part of nonlinear susceptibility. Here we have shown that the f -sum rule holds for
the meromorphic extinction coefficient, which includes both the linear and nonlinear extinction
coefficients. The validity of the f -sum rule was proven to hold for the two-phase Maxwell–
Garnett nanocomposite in a linear regime [30] and the result of equation (10) generalizes
this.

Finally, we wish to emphasize that, due to the various practical applications of high-
power lasers, for example, in technology and medicine, the spectroscopy of meromorphic
optical constants will play an important role.
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